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SUMMARY

/905’7

A differential correction scheme is developed for the improvement of the
approximate initial values of the adjoint variables so that an infegral functional
satisfying desired boundary conditions is optimized. The adjoint variables
satisfy a system of equations that are developed by applying the classical methods
of the calculus of variations, properly extended, or Pontryagin's maximum principle.
Approximate initial values for the adjoint variables are assumed. .

A general transition matrix is derived for the variations of the end con~
ditions caused by the variations of the initial values of the adjoint variables,
including the variations of the thrusting program and of the final time of the
nominal optimum trajectory. An iteration scheme also is discussed for the con-
vergence of the differential corrections to the desired end conditions.
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those of the orbit parameters



Xx, y(T’ ty)

x,(T)
x(t)
x(t)
Xt
Y ®
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Set of orbit parameters

General transition matrix of ﬁi} including the optimum change
of thrusting program

The first six rows of the general transition matrix [T']
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Variation of the set of orbit parameters
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Ah(t) Variation of the general vector of state and adjoint variables due
to the control vector change Au

Af(t) Variation of the vector function of the state variables due to con-
trol vector change Au

Ag(h) Variation of the vector function of the adjoint variables due to the

, control vector change Au

A’g(t) Variation of the general vector of state and adjoint variables

AS(t) Variation of the switching function S(t)

AT Variation of the final time T
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INTRODUCTION

In the problems of the calculus of variations, a system of partial differ-
ential equations must be solved with specified boundary conditions. In addition
to the state and control variables that appear‘in the equations of motion, the
inequalities of constraints, and the functional that should be optimized, there

- is a number of adjoint variables that satisfy additional equations for the optimi-

' zation of the given system. These equations are derived by the application of

the classical methods of the calculus of variations, properly extended, or from

Pontryagin's maximum principle 1], [2].

When some approximate values of the adjoint variables at the initial time
t o have been calculated, then, by numerical integration of the above systems of
equations, an optimal solution is obtained that does not satisfy the desired end
conditions. In this paper, a differential correction scheme is developed that will
improve the approximate initial values of the adjoint variables so that the optimal °
solution will satisfy the desired end conditions. A general transition matrix is
derived for the variations of the end conditions caused by the variations of the
initial values of the adjoint variables, including the variations of the thrusting
program of the noininal optimum trajectory and the variation of the final time.
An iteration scheme also is presented for the convergence of the improved
values of the adjoint variables to those of the optimum solution.

First, the general equations of the state variables, used mostly as
constraints, are given, together with the equations of the adjoint variables.
Second, the variational equations for the above systems of equations are '.
derived, and an application to the problem of minimizing tﬁe fuel of a space
vehicle flying between two given boundary points is givén as an example.
Third, a differential correction scheme is derived for the improvement of
the approximate initial values of the adjoint variables, and ‘an iteration scheme
is presented for the convergence of the improved values of the adjoint variables,
so that the optimum solution will satisfy the desired end conditions. Finally,
conclusions and recommendations are presented for the application of this
scheme to the actual flight of space vehicles.



FUNDAMENTAL SYSTEM OF EQUATIONS

State Variables

The motion of a vehicle is characterized by the vector variable x(t) belonging
to the vector space W at any instant of time t. It is assumed that this motion is
controlled by a control vector u(t).

The fundamental system of equations of state variables is given by
= f;(x(. 20) i=1,2,...n) @

where Xx(t) is an n-dimensional piecewise differentiable state vector, and u(t) is
an r-dimensional plecewise continuous control vector belonging to an arbltrary
control region U that is independent of time. The functions fi are defined for
XEW and for u €U and are assumed to be continuous in the variables x(t) and
u(t) and continuously differentiable with respect to x(t). For a certain admissible
control u(t), the motion of the vehicle x(t) is uniquely determined.

The integral functional to be optimized is

T
%m=L £ (x(, u@)dt @

o

The necessary conditions for the optimum control vector u(t) of Eq.(2) are
formulated for fixed boundary conditions of the state variables x(t o and x(T)
and for free end time T.

Adjoint Variables

For the optimum solution of Eq. (2), another system of equations is con-
sidered. This system is linear and homogeneous in the adjoint variables
YO =Gg¥qeee-¥y) = (Vo> X) which is an (n+1) -dim'en;iona,; continuous vector,
and is given by

o Of(x(),ud) ) |
}.' (t) ='Z d 39X, Yj(t) (i=09100°'n) o (3)
i=0 oo
2



The Hamiltonian X(t), u(t), y(t) ) is defined by
o .

ﬁ(.’."ll ’.!) = z Yi(t)fi(_’s(t)._‘_l(t)) ‘ “)
i=0

and the systems of Eqs. (1), (2), and (3) correspond to the Hamiltonian system

. . _OFH
xi(t) = ayi

' )
7,0 = —&gx

Pontryagin's maximum principle and transversality condition glve, for

optimal x (T), the function J&(x®),u®), y(t) )-of u(t) belonging to U attains its
maximum at the point u(t), i.e.

Hz0.u0.y0) = sup. Hizm.um.ym) =0
u

©)
TS0 and  ym =0 |

where the subscript k corresponds to the subscript of the state variables for
which the terminal value X, (T) is free. For most of the engineering applications,
we have y_ # 0, which is normalized to Yo = -1
(L)
The Lagrangian multipliers A (t) of the classical calculus of variations are
related to the adjoint variables y(t) by the relationship

(L of (X(), X(t), utt)) - :
Ab = = Yot + ¥, ™
i#0 ' |

If the time t appears explicitly in the system of functions f or fo’ then it always

can be transformed to an autonomous system by introducing an auxiliary state
variable that is defined by

in+1(to) =1 . with xn+1(to) =% @)
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Example

For a space vehicle powered by a throttled engine and flying in the
gravitational field of only one attracting body, the system of equations of the
state variables, i.e., Eq. (1), reduces to

R=¥Y f1oipe1y

L) = - _E_ u

V=-3B*"me £yt fs ®)
§= - ot

m c L

where e is a unit vector in the direction of the thrust, and u(t) is the control

_variable belonging to the range 0 s u(t) s K. .'

For minimizing the fuel between x(t ) and x(T) with free end time, the
integral functional to be optimized, i.e., Eq. @), becomes

. .
x_(T) =It £ (X(, ugt) )dt (10)
o .

. _____.=_g_@
wrthf0 m el

The system of the adjoint variables, i.e., Eq. (3), reduces to

J,H =0 A
R\ L7 %2
o =L-) -3u——R Vg
L ol
T r . 7(11)
lf(t)=-y. . Ve |
L ] _= y
v, =22 - o). 5
 m st
4



The maximum principle and the transversality conditions of Eq. (6) become

# - s‘épufh Vofo + v ¥ +2- (AR +20e ).y, 88 -
u ; r

A N 12)
y ) =-1 and  y,(T) =0

= uft)
where fo P

From Eq. (1), it is obvious that A //e and that the switching function for
u =0 or u=K is defined by

Al oy, -y |
St) = —— - 7c °Zo o as)

when uft) = <IO< (m respectively.

VARIATIONAL EQUATIONS

In this section, the variational equations of the optimum trajectory of a
space vehicle are derived. “The formulation of these equations is required for
the application of the differential correction scheme that is developed in the next
section.

The application of Pontryagin's maximum principle fo; the solution of
optimal problems yields additional information for the synthesis of optimal
controls. Making use of this principle, the system of Egs.’ '(1) and (3) may be
rewritten in the following general form.

x(t) f(x,5,u)
tm=| | = (14)
y® B ®Y.1)
5
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The variations of this system are obtained by
Af() =F(t) Ax(t) + Ah@) (15)

where the matrix F(t) and the vector Ah(t) are given by

i " a!_’-
3 ¥y
F@t)= |
og og
=
-9 T 1 (16)
Af f(u+Au) -f(w '
Ah(t) = =
Ag E(u +Au) -g)
. - . L. -

Transition Matrix

The‘fundamental solution matrix for the homogeneous part of Eq. (15), i.e.,
&M =F) 20

with initial conditions tb(to, t,) =1 (unit matrix), is the transition matrix ¢i,t o
of the system. From the properties of the fundamental solution matrix and the
transition matrix @(t, to), we obtain

¢

Art) = &(t.t) Are) + f &, T) Ah(n) dr an
t .
o]

which is the solution of the non-homogeneous Eq. (15)."

In the example of the powered space vehicle flying in.the gravitational field
of one attracting body, Eq. (17) reduces to

N
AX(T) = (T,t) Art) +) S(T.t) Abtt) & - ag
j=1



where t,j is the time at which the thrusting program of the optimum nominal trajec-
tory with the approximate values of initial conditions r(t ) switches "on" or "off"
during the time interval t < tj <T, ‘and Ax(T) gives the deviations of the nominal
end conditions from the desired end conditions, i.e.

i 1
AX(T)
AxX(T) = !
| bme
_axm =(T) 1 T i
_— —_ ' Wt X _(T,t
=6y ey | |aT KO
¢(T,t) = = a9)
- 3y(T) 3y (T) -
=6 =y | | = st
(. . 1 T..
Ah(t) = lim = -
J €0 ) » -
Lx (tj' € - l(tl"' €) Lal(tl)
. o

Because the boundary conditions of the state variables at the initial time t o
are given, we have Ax(t 0) = 0, and Eq. (18) becomes (see Fig. 1)

N

Ax(T) =&(T,t) &xtt) -Z &(T, t) or (O Atj (20)
=1
or

sxm) [% X\ o | on %D x O s

n

J
1Ay ('I? : Yx Yy Ay(t 0) j=1 Yx(j) Yy(j) q‘z(tj) |

where X =X(T,t_), and X9 =X(T,t) -
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- From Eq. (215, we get

N
AX(T) =X, AY(t) -) [xxm 53¢ +'xy°7 Gj(tj)] at, @2)
=1
“and
N
aym =y ax69-) [v,D s2e) + ¥, 9 egep |y @3)
=l

Thrusting Program

In the formulation of the variational equations of the optimum nominal ,
trajectory, the time variation At.j of the optimum thrusting program has been
inclnded where tJ is the time at which the thrust switches "on" or "off' and the
sw1tchmg function of the nominal trajectory is zero, i.e., S(t) = 0. The time
variation AtJ is calculated from the variation of the switching function AS(tj+At ) .
for which

S(t; +4L) + ASE + At) =0 24)

From the linear expansion of Eq. (24) we get
St At.~- S Arg. +At,) ‘ 25)
T T=T

Because A_g(tj +Atj)°-A_1_'(tj) +A_r',(tj) Atj and —— ar Ar(t) =0, Eq. (25)
becomes

S

sty aty~ -8 are) S " @6)

Expanding the variation Ar(tj) from Eq. (20), we getu

i<j

Brit) =Bty AIC) Z Ot t) OFt Al » @7)
i=1l
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1<]

At = E(%; ar(t) [¢(t t)Artt ) - 26«; t)ﬁr(t)At]
and, in terms of the variations Ay (t ), it becomes

3S(t.) 3s(t.) -
U U Ik —
M7 e =G Y T T Yyt JAZE).

1 95(t)

"By ax(t) Z x5t G0) +X 0t 090 | Ay

i

sty S
1 i . .
' a) uAE) g;l [xe (hpt) BRG + ¥, 601 656 |ty

From Eq. (13) for the switching function S(t), we find that

. IAI y7 -yo 3 A‘i
S0 = o St =m|A|
K BS(t) A
-éz{(—- = {0 0, 0,0, 0,0, - ;‘;E‘-}
9 5(t;) Y4 s Yo 1
’ ’ » 0, 0, 0, - =~
a-l(t) {mlkl “m|A] mx] c}

DIFFERENTIAL CORRECTION SCHEME

‘Correction Scheme

(@8)

29)

@0

In this section, a differential correction scheme is developed for the im-

provement of the approximate initial values of the adjoint variables so that the
optimum solution of the problem can-be found. . The variations of the nominal
optimum trajectory of the space vehicle, calculated for the approximate initial

values of the adjoint variables, have been derived previously.

9



: Making use of Eqs. (17), we solve for Ar(t o if we know the variation
A x(T) at the terminal time T. In the example of the powered space vehicle we
derived Eqs. (22) and (23) for the variations of Ax(T) and Ay(T) caused by the
variations of the adjoint variables Ay(t o) at qme initial time t and the variations

. Atj at the time tj of the thrusting program, which corresponds to the optimum

nominal trajectory for the approximate adjoint variables.

Free End Time

In the case of free end time T, a variation in the terminal time also is
taken into consideration, and, making use of Eqs. (29), we find that

AX(T) = [T] Ay ¢ ) +X(T) AT ‘ | 31)

Ay(Ty = [R]Ay ¢) + AT - @2)

Separating the seventh row of Eqs. (31) and (32), we get

AX(T) = (T'] Ay ¢ Dt ém AT 33)
Ay, (T)= Q, Ay(t) +¥,(T)AT B9

where Eqs. (33) and (34) are of the form

(6 x1]; [6x7][7x1]+[6x1][1x1]
[1x1]=[1x7][7x1]+[1x1]{1x1]

respectively, [i‘] represents the first six rows of {I"], and 07 represents the

seventh row of [Q].

For the solution of the system of Eqs. (33) and (34) for Ay(t o and AT from
the deviations A_it(T) and Ay,,(’r) = 0, we need one more relationship, and this is
obtained from Eq. (12), i.e.

7
Fix.my =) v-50 -1,6 =0 @5)
j=1
10
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Taking the variation of .’T(e(t) at time t,» we get
7 7 '

z fj(to) ij(to) + Zl ¥;(to) Afj(to? -Af () =0 (36)

j:l j:

Because Afj(to) =0 and Af o(to) = 0 if the variation of the switching function
AS(to) does not change the sign of S(t))» Eq. (36) becomes

7
), §t) Ayt ) =0 67
=1
or
) ue,) .
V) - Ave) + Rty - AAE) - —5= Aygtt) =0 ©8)

Thus, combining Egs. (33), (34), and (38), we get eight equations with eight .
unknown variations that are given by

AR(T) (T3 im | | axe)
0 = a, ¥, (D) @9)
o x(t g 0 AT
L o L— 0) . e -

Solving for Ay(t ) and AT, we find that

- . = A A ar .
Ay(t) [T] im |t LX) |

-9  gm |o. | @0)
AT g(to)T o | .|o |

Iteration Scheme

_ For the calculation of the optimum trajectory of a space vehicle, the
differential correction scheme described in this section is applied, and the
variation of the adjoint vector Ay(t o) at the initial time to’ as well as the varia-

11
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tion of the final time AT, are derived to match the desired conditions at the final

time T in space. Making use of the corrected adjoint variables Y€)=yt +A_;_r(t°),
a new optimum nominal trajectory is computed by integrating the system of equations
of the state and adjoint variables, i.e., Eqs. (9) and (11), by making use of Eq. (13)
for the optimum thrusting program as described previously. Because the differential
correction scheme has been derived for linear variations of highly nonlinear equations,
it is expected that there still will be a discrepancy between the desired and the new
computed values of the end conditions A gl(Tl) , Where T1 =T+ AT.

In general, successive iterations generate corrections Axk(t 0) to the adjoint
variables at time tO from A_:_zk(Tk) such that

k

T =Xty + AL ) =X + ) Axytt) “1)
i=0

which, in turn, gives end conditions with deviations A_}_{k 1 Tes) from their de-
sired values, and
k
T, =T+ ) AT 42)
i=0

This iteration scheme converges to the desired end conditions of the state -
vector, provided that the deviations are within the linear range. Departure from
the linear range will be indicated when the deviations of the computed nominal end
conditions from the desired end conditions Ax,; (Tl')ﬂ_are comparable to or exceed
the deviations Ax(T). In this case, each step of the iteration scheme described
above contains a sub-~iteration carried out on a parameter ;‘k -introduced as a
factor multiplying the deviations Alck(Tk) . Thus

Ax, (T =¥, BX(TY 3)

From A_)_(k*(Tk), we obtain the correction Axk*(to), which is added to Ik*(to)
for the k™ estimate of the adjoint variables at time t . - The sub-iteration consists
of the determination ofavalue of Yk (0<-yk$ 1) sqch that the deviations A_J_gk +1(Tk +1)
computed from the corrected adjoint variables, i.e.

12
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* * .
Fys1 G =Xty +AYy € =3 + Z Ay; () @9
2o |

are comparable to or less than the deviations‘ Al:k(Tk). This procedure is continued

" until the linear range is reached for which Y = 1 and the iteration scheme converges

to the desired end conditions.

It should be noted that the same procedure is followed when parameters other
than the state variables are specified as end conditions. Of éourse, these para-
meters must be expressible as functions of the state variables.

CONCLUSIONS AND RECOMMENDA TIONS

A differential correction has been developed for the improvement of the
approximate values of the adjoint variables so that the optimal solution of the prob:-
lems of the calculus of variations is obtained. The mathematical analysis for the
differential correction scheme for the optimum trajectory of a space vehicle with

- minimuni fuel consumption between fixed boundary conditions has been presented.

The method developed relies on the variations of the nominal optimum trajectory

~ of the space vehicle calculated for the approximate initial values of the adjoint

variables, which are assumed to be given. Techniques for the calculation of these
approximate values are not considered in this report.

A general transition matrix has been derived for the variations of the end
conditions caused by the variations of the initial values of the adjoint variables,
including the variations of the thrusting program of the nominal optimum trajectory
and the variation of the final time. An iteration scheme also has been discussed
for the convergence of the improved values of the adjoint variables to those of the
optimum problem satisfying the desired end conditions. In“addition, a method for -
the case of variations beyond the linear range has been outlined. '

This program will be highly useful for the determination of optimum space
missions and for optimum orbit transfer for intercept and rendezvous of space

~ 13
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vehicles as well as for optimum navigation and guidance of a space vehicle.
Further work in this area is readily suggested. First, techniques should be
developed for the approximate initial values of the adjoint variables that are
used for the optimum nominal trajectory. Second, this correction scheme

_could be extended readily to optimum problems with more general types of

end conditions than those considered in this report. Finally, a more general
differential correction scheme is required for the optimum pursuit of a powered
spacecraft, which would involve a statistical-control scheme for the probability
law of a randomly moving point,

APPENDIX

VARIATIONAL PARAMETERS

For the calculation of variations of the optimum space trajectories, there
is a general matrix introduced that relates the variations of the state and adjoint

variables at time t to those at time t,- This matrix, called the general transition
matrix, requires the computation of the partial derivatives of the state and adjoint

variables at two different times, i.e., t o and T, and relates their linear vari-
ations at these times, including the optimum changes of the thrusting program.

When the thrust is "off, ' the system of equations for the adjoint variables
is "adjoint" to the system of equations for the variations of the state variables,
which, in this case, ishomogeneous, and the transition matrix of the state variables
is used for the calculations of the adjoint variables during the coasting intervals
of time, i. f.-, t.<t<t, ;. 'In this case, the transition matrix of the state
variables X (ti+1’ ti) is found from the corresponding Kepler problem, and it is

expressed in closed form from the solution of this problem.

‘The variations of the state variables and the values of the adjoint variables
for the coasting interval are given by [3].

14
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X)) = Kbty 0t AR

- -1 (45)
¢, =[x ¢i+1’ti)] ¢
] where
20T = 0%y Xy Xy X0 Xg)
AT (46)
I(t) ;W19y2:YSDY4ay5’y6)
and
. 3, )
X(t. ., t)= — i+l 47
(1+1’ N Bii(ti) 47)

The use of the conventional state variables _:::(t), which are position and velocity
vectors R and R in cartesian coordinates, has the disadvantage that all of their ele-
ments have secular terms that vary rapidly with time. If, instead of the conventional
state variables, other parameters are used as state variables, the resultant matrix

might be simplified considerably. For example, consider the following parameters
and their variations:

Aag Rotation of R about R

Aa, Rotation of R about R

Aoy Rotation of both R and R about H

Aa, Change in cos (R,R), keeping v and R constant
Aag Relative change in the semimajor axis Aa/#,

keeping R and R/v constant
Aa6 - Relative change in the magnimd.e of the position
vector (Ar/r), keeping R/r and R/v constant.

The transition matrix corresponding to the above parameters, i.e.

Aafh) = Tt) At 48)

15
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where some of the non-zero elements are listed as partials of the orbital para-

meters and are given by Ref. [4] as

%"%;“"‘[1%3(:‘, *‘“40)* (-1 X6-1))]

\a . r : _rv
2 - & [hedeaaea)en 2o 7 00) o
50 "o T ° °°
- B —_—t Y - 204+ (-1 4 ©2)
50!60 r2 [fg( TV 2> g+ ) vo 40] |
0o o0
day TV, . "“4 _I . 53
Bagg = [g Cl ) J -

. 3v(t-t | r
':%;; - ;Jv%' [(1 ":':') {“4 G%%o*é)' "v'ir—e)é' 4Z>} '%@"’3’) ®40

. 64
Ep-C-DadH s Cu T«
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The transformation relating the variaﬁon of_the‘conventional- state.variable A§T=
(AR, AR) to the variations of the above set af paramaters Adm Bags Adtys « - + Latg)
isgiven by - .

AZ@) = P A2 and Aa) =P~ AXM) (58)
where
| -H HxR
— 0 0 0 R
v h ) : =
P{t) = : . 69
H HxR ..
o  F —§ BB pB 3B
R 2v’a . v
. he t
and
wH HxR  HxR - - R
T h hx v T r 4
p(t)"l = (60)
rH -HxR :
o 5 0 — %5 ’
_ W v | -
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The relationship between the transition matr:x X(t to) for the conventional

state variables x(t) and ¥ (t,t o) for the above set of parameters a(t) is given by

Xtt) =P® Yt PE) ™ and W(t,t)=PH  XEL)PE) O

‘e . A Y
The scalar functions f,g,f, and g are given by

(Elliptio)
f?-r—a-(coae-l) +1°
° ,

g= (t'to) 6- sinG

e onl
f--%-l-_n—-sine
°o

%(cos B~1) +1

(Hyperbolic)

f=2(cosh6-1)+1
ro

g = ot - SLE 20 2

f= B g

b ob 3
o

é= %(cosh_e- 1) +1
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